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We discuss the effect of hydrostatic pressure on the superconducting properties of the strong-coupling
metals Pb and Hg. We solve the Eliashberg gap equations at zero and at finite pressures to obtain the
gap Ay in the excitation spectrum at 7°=0 and the critical temperature 7'.. The calculations are effected for
kernels at zero pressure and repeated with kernels appropriate to a 59, volume decrease. At nonzero pres-
sure the phonon parts of the kernels are rescaled for the upward shift in the phonon frequencies and adjusted
for changes in the electron-ion pseudopotential form factor. It is found that Ay and 7°; do not scale in the
same way under pressure. The gap is relatively more affected, so that the ratio 24¢/k57"; tends towards the
BCS weak-coupling limit of 3.52 with decreasing volume and, hence, decreasing electron-phonon interaction.
In Pb, our results are in good agreement with experiment for both the change in 7' and in the ratio 2A./%57 ..
In Hg, no experimental results exist at the moment, but we predict similar strong-coupling effects.

I. INTRODUCTION

HEN the volume of a metal is reduced by
application of hydrostatic pressure, the phonon
spectrum shifts upwards to higher frequencies as a
result of a general stiffening of the lattice. The macro-
scopic Griineisen parameters give an indication of the
extent of this upward shift. In superconductors it is
also observed that associated with the application of
pressure there is a considerable decrease in the critical
temperature 7°.! This indicates a weakening of the
electron-phonon interaction with decreasing volume.
Interesting systems in this respect are Pb and Hg which
exhibit important non-BCS behavior in many of their
properties? at zero pressure (P=0). This is associated
with a particularly strong electron-phonon interaction.
A convenient measure of the strength of this interaction,
as related to superconductivity, appears to be the ratio
of the energy gap A, as measured by tunneling to the
critical temperature 7.3 BCS theory predicts a value of

2A0/ksT:=3.52 (kp=Boltzmann’s constant)

which holds well in the weak-coupling limit. For Pb
and Hg, this ratio is considerably higher and approxi-
mately equal to 4.3 and 4.6, respectively.

Since the actual size of the ratio 2A/ksT’; can be
taken as a rough measure of the strength of the electron-
phonon interaction and since this interaction is reduced
on application of hydrostatic pressure, one would expect
it to decrease towards 3.52 with decreasing volume. This
implies that the gap and 7', will not scale in the same
way under stress. The gap must decrease faster than
T.. This effect has been observed experimentally by
Franck and Keeler* in Pb. From measurements with
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pressures P up to approximately 3% kbar they conclude
that
dInAy/d InT:=22.06.

In this paper we show that this strong coupling effect
can be understood quantitatively within the Eliashberg?
formulation of pairing theory. We numerically solve
the gap equations at zero and finite temperatures to
get Ag and T, respectively. The kernels in the Eliash-
berg gap equations are the phonon-mediated frequency-
dependent part o?(w)F(w) and the Coulomb repulsions
U.. The repulsive Coulomb part is insensitive to pressure
and easily handled. The phonon part is of greater
interest. For zero pressure, it is known from inversion
of tunneling data.® Recently, it has also been possible
to calculate it from fundamentals”® from the measured
phonon dispersion curves and pseudopotential theory.
While the latest calculations of o?(w)F(w) in Pb by
Carbotte and Dynes” are more sophisticated and precise
than the earlier work of Swihart, Scalapino and Wada,®
they still cannot be considered as accurate as the
tunneling-derived results. In such first-principle calcu-
lations, some model for the lattice dynamics is needed.
Carbotte and Dynes take this from a Born-von
Kérmén force-constant model derived from the mea-
sured phonons by inelastic neutron scattering. In Pb,
the dispersion curves are highly structured and a
convergent force-constant system is difficult to achieve.!
Nevertheless, such approximate models are useful.
They specify completely (if only approximately) the
lattice dynamics and in conjunction with pseudo-
potential theory for the strength of the electron-ion
interaction can predict gap values quite close to the
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1 STRONG-COUPLING EFFECTS IN

observed ones.”'® Thus at finite pressure similar calcula-
tions can be performed with some confidence using a
rescreened pseudopotential form factor and shifted
phonons.

To our knowledge, no extensive data on phonons
under pressure are at present available from inelastic
neutron scattering. In the absence of this information
we shift all phonon frequencies upwards by the same
proportion as indicated by the average Griineisen 7.
This procedure is simple but not exact as shown by the
tunneling experiments of Franck and Keeler.! They
find that the average v in the transverse peak of
a?(w)F (w) is smaller than that for the main longitudinal
peak. Strictly speaking, these results apply only at the
relatively low pressures used by Franck and Keeler.
It is not obvious that they should remain valid at the
pressures that are of interest here—5% volume changes.
In any case, by direct calculation we find that such
details do not appear to be important in the present
context. At worst, one can consider our calculations as
representing a model case, similar but perhaps not quite
identical to Pb.

From the phonons at finite pressure P and the pseudo-
potential form factor rescreened to account for the
volume decrease we can repeat the calculations of
Carbotte and Dynes to get o?(w)F(w) at finite P. From
these calculations it is found that pseudopotential
changes are much less important in Pb than the shifts
in the phonon spectrum. Also, changes in the pseudo-
potential can be included with very little error by a
simple multiplicative factor. The size of this factor is
determined solely from the form factor, i.e., independent
of the lattice dynamics. In simple physical terms this
arises because the shape of o?(w)F (w) at finite P is to a
large extent dominated by that at 2=0. Further, within
the approximation of a uniform shift the changes in
the phonons lead to a simple stretching on the frequency
axis accompanied by a compression on the vertical
axis. These observations are important since they make
it possible to go directly from o?(w)F(w) at zero pres-
sure to a good estimate of its value at finite P. We can
then use tunneling-derived results rather than those
obtained from the neutron data. In Pb we have already
mentioned that the tunneling o?(w)F (w) is likely to be
the more accurate. For Hg this is the only source of
information on the phonons.

So far we have chosen to emphasize mainly the strong
coupling aspects of cur calculations. We are, however,
at the same time making fundamental calculations of
the effect of pressure on 7.2 This subject has received
much attention in the literature. Recent references are,
among others, the paper of Olsen, Andres, and Geballe,?
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of Seiden,” and of Hodder.® Of these the work of
Hodder is perhaps the most closely related to the
present discussion! McMillan'® has solved the finite-
temperature gap equations for a niobiumlike spectrum
with variable coupling strength and frequency range.
He then fits an approximate formula for 7', to his nu-
merical solutions. The final form of the formula involves
a phonon cutoff w,, the Coulomb part U,, and a constant
\ related to the phonon renormalization of the electronic
effective mass. Hodder uses the McMillan formula and
calculates the effect of pressure on N from the approxi-
mate phonon density of state originally employed by
Schrieffer, Scalapino, and Wilkins.'” Since he does not
explicitly solve the gap equations he is unable to discuss
separately the gap Ag and T'; as we do. Even for 7', our
work represents a refinement of Hodder’s since we avoid
any uncertainty there may be associated with the use of
McMillan’s approximate formula and with the two-
Lorentzian form for the phonon spectrum. ‘

In Sec. II the kernels of the Eliashberg gap equations
are specified. It is shown how the phonon-mediated
part of these kernels can be calculated from the neutron
data on the phonons and from the electron-ion pseudo-
potential form factor. The effect of pressure on these
kernels is also discussed. In Sec. III we develop rules
for rescaling the zero-pressure results for o*(w)F (w),
so as to obtain its value at finite pressure. These rules
evolve naturally from our calculations of a?(w)F(w)
from phonon-dispersion curves. Section 1V is concerned
with the results obtained and discussion. In Sec. V we
draw conclusions.

II. KERNELS

The Eliashberg’ gap equations for superconductivity
have been drived in many papers!® and solved numeri-
cally both at finite®!® and zero temperature.’'” They
are now standard and there is no need to write them
down; what is involved are two nonlinear coupled
integral equations for a frequency-dependent gap func-
tion A(w) and a renormalization factor Z(w). At zero
temperature the solution to A(Ag)=A, with A, real
gives the gap (A, in the quasiparticle excitation
spectrum as measured for instance in a tunneling ex-
periment. The zero-frequency limit of Z(w) gives the
phonon renormalization of the electronic effective mass
at the Fermi surface (FS). At finite temperature the
interpretation is no less direct. For details the reader is
referred to the recent reviews of Scalapino? and of
Ambegaokar where the present state of strong coupling
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theory is amply described. Of greatest interest to us
here are the kernels in the gap equations. They involve
a number N (0)U, characteristic of the basic Coulomb
repulsions between electron pairs at the Fermi surface
and the frequency-dependent product = function
o?(w)F(w) describing the phonon-mediated part of the
pairing interaction. Approximate formulas for N (0)U,
are known. It can be written as

B NO)V.
AN (). In(Er/w)’ 1)

NQO)U

where N (0) is the single spin density of electron states
at the FS and V., is the FS average of the screened
Coulomb potential. The argument of the logarithm in
(1) is the ratio of the Fermi energy Er to a phonon cut-
off w, usually taken to be of the order of five times the
maximum phonon energy. In the Fermi-Thomas

approximation,
k 82 k 32 +4k I"2
n(-—5), o
8k

F k 32

NO)YV.=

where %, is the Fermi-Thomas screening parameter.
It is straightforward from (1) and (2) to verify that
N(0)U, varies, under volume change, more slowly than
1/kr. This variation is of no consequence for our calcu-
lations. While formula (1) is not exact, we can assume
that it gives a reliable measure of the pressure varia-
tion of this parameter which we can then take as
constant.
The phonon part of the kernels can be written as

|gp,p':)\|2
(@) () =X» / & / LA
sF sp’ (27")37)F’

xifo—a(p-pN] / f &, @)

where vF is the Fermi velocity. The two integrals over
p and p’ are to be performed on the FS. They describe

all scatterings of electrons from an arbitrary initial -

state |p) to a final state |p’). The scattering with mo-
mentum transfer p—p’ is through the phonon field and
g».0n is the electron-phonon coupling constant. The
index A denotes the polarization branch—one longi-
tudinal and two transverse. The phonon frequency
w(p—p’;\) corresponds to the mode in the first Brillouin
zone (FBZ) which is defined by the reduced part of
p—p’. In general, umklapp processes are involved.

Using pseudopotential theory” for the electron-ion
interaction the coupling g,,,7;» can be related to the
electron-ion form factor (p’|w|p) for scattering from
|p) to |p’) on the FS. It is

8p.p’id = —i[20(p—p N MN ]2

X (p—p)-elp—p M@ [w(p), @)
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where M is the ion mass, N is the number of ions per
unit volume and e(p—p’,\) is the polarization vector
associated with the phonon frequency w(p—p’;\).
The pseudopotential form factor is as described by
Harrison.

A considerable simplification results if we assume
the FS to be spherical and take (p’|w|p) to depend only
on the momentum transfer p—p’ (local approxima-
tion).? The two surface integrals in (3) reduce to a
three-dimensional integral over q=p—p’, and we can
write

d3

2(w)F (w) = ! qL M) : 5
(o)l (@)= — T / L@e—o@N], ©)

<2kp (27")3

with the integral over ¢ extending throughout a sphere
of radius 2kr and Lyx(q) given by

1m |q-elq;N)]|?
Lx(q)=~7_lq (a;N)]

(©6)
4 M kpqw (q ;)\)

|w(q)|?,

where w(q) is the local pseudopetential form factor.

Carbotte and Dynes have recently evaluated Eq. (5)
directly from the lattice dynamics in some simple
metals and used the resulting a?(w)F(w) to discuss
superconducting properties with some success. Since
then the work has been extended to the Tl-Pb-Bi alloy
series by Dynes, Carbotte, Taylor, and Campbell®
giving added confidence in the method. The pseudo-
potential form factor can be taken from the work of
Heine and Abarenkov.2! The phonons are measured by
the inelastic neutron scattering technique. Select
phonon frequencies are determined usually in the high-
symmetry directions. The experimental dispersion
curves are analyzed on the basis of a Born-von Kdrméan
force-constant model. For a specific number of nearest-
neighbor shells the spring constants between ions are
adjusted to get the best possible least-squares fit to
the neutron data. The system of force constants so
obtained specifies equally well the dynamical matrix
at any point in the FBZ. The renormalized phonon
frequencies and polarization vectors at g are simply
the eigenvalues and eigenvectors of the dynamical
matrix at ¢. Gilat and Raubenheimer® have developed
sampling techniques and computer programs that can
generate an accurate frequency distribution from the
force constants. By repeated diagonalization of the
dynamical matrix they can calculate quite accurately
the function

Flw)= %Zx f

with ¢ extending over the FBZ. Carbotte and Dynes
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have generalized this program to calculate instead
a?(w)F (w). Besides the force constants, the only addi-
tional input is w(q) for ¢ in the range 0 to 2kr. We want
to repeat these calculations for metals under pressure.

III. EFFECT OF PRESSURE ON o?(0)F(w)

To our knowledge no extensive inelastic neutron
scattering data exist for metals under hydrostatic
pressure. Some indirect information is always available
from the Griineisen constant for the material. These are
related to the shifts in the long-wavelength part of the
dispersion curves. In Pb, superconducting tunneling
provides additional information. Franck and Keeler!!
quote average vy’s for both the main transverse and
longitudinal peaks in the lead-phonon spectrum. For
the low-energy peak they find yr=2.6, in good agree-
ment with the usual Griineisen v and a value of y;,=3.4
for the high-energy longitudinal peak. These results
are obtained with the application of relatively modest
pressures and may not apply directly to a 5%, volume
change which we consider. To begin, we use a constant
frequency independent Griineisen y. Later we return
to the more complicated shifting suggested by Franck
and Keeler’s work.

We can proceed in two ways. We can take the neutron
results of Brockhouse ef al.!° for the phonons at atmo-
spheric pressure and rescale them with an average v to
obtain dispersion curves appropriate to a 59, volume
decrease. A Born—von Kédrman force-constant fit can be
made to these new curves and used as inputs to the
computer program of Carbotte and Dynes. The phonon-
dispersion curves in Pb are, however, very structured
and show distinct Kohn kinks, so that they are difficult
to fit accurately with a limited number of nearest-
neighbor shells. Uncertainties in the spring-constant
system then become important and the method is less
good. For this reason and also for simplicity it is better
to use the atmospheric value of the force constants,
calculate the phonons, and rescale the frequencies
internally. This ignores all changes in the polarization
vectors under pressure. This is not likely to be an
important limitation. Detailed scans of the FBZ show
that in cubic systems the polarization vectors are very
nearly completely transverse or completely longitudinal
everywhere in the zone. They are not likely to be
altered provided the symmetry is not changed, i.e.,
a phase transition to a new crystal structure does not
occur.

The pseudopotential form factor also is affected by
volume compressions. It can be written as a bare form
factor 1°(q)—characteristic of the ion core and taken
approximately independent of energy—which must
then be screened because of the conduction electrons.
Assuming #°(q) to be a weak perturbation, we can
screen in linear-response theory and get

w(q) =1°(q)/e(q)°, ®)
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F16. 1. o?(w)F(w) in Pb calculated for volume changes of 0%
(solid) and 5%, (dashed).

where e(q) is the dielectric function for the electron gas
and Q° the volume per ion. Under pressure 1°(q) is
unaffected and only Q° and the dielectric function e(q)
is affected. But these are determined only from the
electron gas density, i.e., kr value. This change is
easily incorporated.

In Fig. 1 we compare o?(w)F (w) for a volume decrease
of 59 with the zero-pressure results of Carbotte and
Dynes. The average Griineisen v used was 2.85 and the
pseudopotential was the Heine-Abarenkov form tabu-
lated in Harrison properly rescreened according to (8).
We note the shift to higher frequencies and the general
lowering of o2(w)F(w) on the vertical scale. Both these
effects tend to reduce the effectiveness of o?(w)F(w) in
causing superconductivity. The decrease on the vertical
axis can be traced in part to the frequency factor in the
denominator of (6). Changes in the pseudopotential
form factor have the opposite effect. They tend to shift
the curve up a little without appreciably changing its
over-all shape. These changes are, however, much
smaller than the corresponding changes due to the
phonons. Careful comparison of the two distributions in
Fig. 1 in fact, shows that for all practical purposes one
can be obtained from the other by a simple rescaling of
the two axes. This can be understood quite readily
from Egs. (5) and (6). It is convenient to think of all
momenta as measured in units of 27/a where a is the
lattice parameter. No change then occurs under pressure
except for the pseudopotential and the frequency
denominator in (6) as well as the phonon frequency in
the 6 function of (5). The pseudopotential change is as
we have already discussed not large and for the moment
can be left out. For a given relative volume change
—AV/V, w(q;\) gets multiplied by 8 given by

and noting that

[Bu—Bw(g;N) 1= 1/B)w—w(@N],

we conclude that o?(w)F(w) at finite P is related to its
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F1c. 2. Solid curve is o?(w)F(w) in Pb (after McMillan and
Rowell, Ref. 3). The dashed curve is the McMillan-Rowell
curve rescaled to correspond to a 5% volume decrease.

value at P=0 by
?(Bw)F (Bw) = (1/8*)ac* (@) Fo(w) . ©)

To include, at least approximately, the small pseudo-
potential changes we can follow the procedure of
McMillan.’6 We note that the first moment of o?(w)F (w)
is independent of the lattice dynamics and determined
completely by the pseudopotential form factor

00 2k 1
wa (w)F (w)dwa -/
/o o krN

which is obtained directly from (5) and (6) using the
closure relation on the polarization vectors

2ox €a(q5N) g™ (@5N) = agp. (11)

Since, as we have already stated, the main effect on
a?(w)F (w) of pseudopotential shifts is to multiply it by
some small factor rather than change its shape, we can
account for the effect by simply multiplying (9) by a
further constant factor B defined by the ratio

lw(q)|%Pdg, (10)

el [ oo

Jo ](AV/V=5%)/

| / 'w(“)'2q3dqlp=0; (12)

Thus, we are lead to the approximate relation
?(Bw)F (Bw) = (B/B)a’ (@) Fo(w) -

As implied this relation appears to be almost exact.
Formula (13) is important here not only because of
its simplicity but also because it allows us to go quite
directly from the zero-pressure tunneling derived value
of a(w)Fo(w) to a good estimate of its value at finite P.
The value of 8 can be worked out from the Griineisen
constant and B is easily calculated from Harrison’s
tabulation of the Heine-Abarenkov pseudopotential

(13)
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which must further be rescreened at finite P. In Hg,
only tunneling results exist on the phonons. In Pb the
Born-von Kérméan force-constant model with a prac-
tical number of force constants does not give a very
good representation®® of the frequency distribution,’
and tunneling derived results are at the moment thought
to be more accurate, although they do not lead to very
different gap values. Finally, we note that Eq. (13) is
easily generalized to account for a different shift of the
phonons in the longitudinal and transverse peaks of
Fig. 1.

IV. RESULTS AND DISCUSSION

First we solve the zero-temperature Eliashberg gap
equations to determine the gap A, in the ground-state
excitation spectrum as measured for instance in a
tunneling experiment or in optical absorption. For the
P =0 spectrum of Fig. 1 we adjusted the Coulomb part
N(0)U. so as to reproduce the measured gap

Ap=1.35 meV.

This should remove much of the uncertainty in U,
even at finite pressure. We expect no important change
in this quantity for a 59, volume change and keep it
constant. For the shifted spectrum of Fig. 1, we obtain
a gap value of

(A9)5%=1.01 meV.

These numbers are mainly for reference. We want next
to compare them with the equivalent results obtained
by rescaling the McMillan-Rowell “inversion” value for
a?(w)F(w) at P=0 according to prescription (13). We
expect this form to be somewhat better.

For a 5% volume change we find, by direct evaluation
of the right-hand side in (12) from the tables in Harrison
of the Heine-Abarenkov form factors, a value B=1.035.
This is less than a 49, change. In contrast, for a average
Griineisen y=2.85, the multiplicative factor 8 shifting
the phonons is 3=1.143, considerably more important.
From this information and the value at P=0 of a¢?(w)
Fo(w) given by McMillan and Rowell we have con-

+.0[- Pb

~—"NCA
/'w\‘/ \\\
0

< =

3 .
E © (a)
3*’!.0— . Pb
N ~——
0 s e —
-1.0f
L,
0 10 20 30
w (meV)

F16. 3. (a) Ar(w) (solid) and As(w) (dashed) for P=0 and T
near T, in Pb. (b) A;(w) (solid) and Az(w) (dashed) for a 5%
volume decrease and T near T’ in Pb.
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structed Fig. 2, in which we compare the zero-pressure
results with those for a 59, volume decrease. We have
calculated the zero-temperature gap for both these spec-
trum using the suggested value of 0.13 for the Coulomb
part N(0)U,. For P=0, we obtained

Ap=1.346 meV,

which is a good check on our computations. At 5%,
volume decrease it is

(A0)5%= 1.04 meV N

which compares favorably with the value obtained
using the Carbotte-Dynes spectrum. We expect, how-
ever, the Rowell-McMillan spectrum to be more
accurate than the neutron derived one so that we prefer
it in all further work. Our first-principle calculations
have served mainly to establish the validity of our
Eq. (13).

It is important to compare our Fig. 2 with the recent
work of Franck, Keeler, and Wu.?® They have inverted
tunneling data obtained at a pressure of 3445 bar to
recover the phonon part o?(w)F(w) at that pressure.
Their zero-pressure inversion is in good agreement with
our Fig. 2. At finite pressure, the comparison is not so
direct and unambiguous. A pressure of 3445 bar induces
much more modest shifts than a 59, volume change.
On the frequency scale the same general shift to higher
frequencies is observed although, as previously dis-
cussed, tunneling results give more shift in the longi-
tudinal peak at 89 meV than in the transverse peak
at 4-5 meV. We have used the same average Griineisen
v throughout with value slightly larger than Franck
and Keeler’s v and less than their .. More significant
are the changes on the vertical scale. We find a definite
decrease with increasing pressure by an amount
~B/p% It is difficult to say whether or not this is
observed in the tunneling results. The van%Hove
singularity observed on top the main transverse part
of the spectrum does not appear to show this decrease.
It is such a sharp peak, however, that such a statement
is not very meaningful. The same inconclusive situation
is found when considering the logitudinal peak maxi-
mum. On the other hand, the minimum between the
two main peaks in the spectrum does show a trend
towards lower values. The evidence is, however, not
conclusive.

Before discussing our finite-temperature work and
results, we want to make one more point. It is easy to
modify our Eq. (13) to account for a different shift of
the transverse phonons than of the longitudinal ones.
We have actually done such a calculation using the
data of Franck and Keeler (yr=2.6, y2=3.4) and
found that the resulting gap value is not significantly
different from that obtained from an average shift with
v=2.85. This indicates that our rescaling procedure,

#J. P. Franck, W. J. Keeler, and T. M. Wu, Solid State
Commun. 7, 483 (1969).
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Fic. 4. Variation of the gap with temperature in Pb. The curves
are BCS; the points are our calculations for volume charges of
0% (circled) and 5%, (boxed).

while not exact in detail, is nevertheless adequate for
the present work.

To get critical temperatures 7', we solve the finite-
temperature version of the gap equations. The fre-
quency- and temperature-dependent gap A(w,T) is
obtained by iteration of the basic equations. The tem-
perature dependence of the “gap edge” is obtained
from

Ao(T)=ReA(Ao(T),T)

for two temperatures below 7. but sufficiently close to
it that A¢(7T) is a rapidly decreasing function of tem-
perature in this region and so that one can easily
extrapolate from these two points to get the tempera-
ture at which it vanishes. This gives the critical tem-
perature. This method was previously employed by
Scalapino, Wada, and Swihart* and by Wu.?®

A solution for the real and imaginary part of the gap

A (w,T) = Al(w,T)+iA2 (w,T)

is shown as a function of frequency in Fig. 3(a). The
plot is for a temperature near 7. and for P=0. It
compares well with a similar figure given by Scalapino,
Wada, and Swihart.?* In Fig. 4 we show the temperature
variation of the gap A¢(T). The two points near T, are
those obtained by solution of the gap equations as is
the point at zero temperature. The solid curve is a
BCS form for Ag(T). It can be used to help us extrap-
olate our numerical data to the A¢(7';) =0 situation and
hence obtain 7'.. Our last point on the curve is suffi-
ciently close to the critical temperature that an extrapo-
lation is hardly needed. For the McMillan-Rowell
spectrum we obtain at P=0 a ratio

20o/kpT =427,

which is in close agreement with the measured value
of 4.3. This is, however, not new and can be considered
as a check on our numerical work.

% D. J. Scalapino, Y. Wada, and J. C. Swihart, Phys. Rev.
Letters 14, 102 (1965).
% T, M. Wu, Phys. Rev. Letters 19, 508 (1967).
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Fic. 5. Variation of the critical temperature with volume
change in Pb and Hg. The solid line is the experimental results of
Smith and Chu, Ref. 1, in Pb.

For comparison we have plotted in Fig. 3(b) Ay(w,T)
and A;(w,7T) as a function of frequency for a volume
change of 5%, and a temperature near 7'.. We see that
the shift in o?(w)F(w) is faithfully reproduced in the
solutions of the gap equations. In Fig. 4 we show the
temperature variation of A¢(T) derived from such solu-
tions. We note that a BCS temperature variation fits
well to our limited data. At 5%, volume decrease the
BCS ratio is

(2A()/kBT¢)5%= 375 ,

which is much closer than the P=0 result to the weak
coupling limit of 3.52.

The gap Ag and 7' scale differently under pressure so
that the BCS ratio decreases towards the weak coupling
value. To compare with the experimental results of
Franck and Keeler? it is interesting to work out from
our data the value of

d1nAy/d InT,.

It varies somewhat with pressure. At P=0 we find the
value 1.92. At a 59, volume decrease it is 2.18. Both
these values are in close agreement with the experi-
mental result 2.06. Strong coupling theory can quanti-
tatively account for the effect observed by Franck and
Keeler.

In Fig. 5 we have plotted the variation of 7' with
volume which we obtain and compare it with the
experiments of Smith and Chu.! The black line is a
straight line through the experimental results. The
agreement with theory is excellent so that our calcula-
tions also account accurately for the observed value of
d InT./dV. Before turning to a discussion of our calcula-
tions in Hg a number of comments are in order.
McMillan'® has also solved the gap equations to obtain
the critical temperature for a Nb-like spectrum which
he rescales according to coupling strength as well as
frequency range. The actual shape of o?(w)F(w) used
was F(w) for Nb as revealed by inelastic neutron
scattering® and a constant o This was an appropriate
choice since McMillan’s main interest was in the BCC

26'Y, Nakagawa and A. D. B. Woods, Phys. Rev. Letters 11,
271 (1963).
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transition metals. He fits his numerical results to an
analytic form which has now become extensively used.
The McMillan formula for 7, is given in terms of the
Debye temperature 6 which fixes the range of the spec-
trum on the frequency scale, the parameter

a*(w)F (w)dw
/ (@)F (w) , (14)

w

which fixes the strength of the electron-phonon inter-
action and finally the Coulomb-repulsion parameter
N(0)U.=u*. The formula is

1.04(1-+A
( )). (15)

9
T,=——exp (—— e
145 A—w*(140.62\)

It is interesting to use (15) to calculate the ratio
T¢(5%)/T:(0) which we have found to be 0.88 for our
detailed calculations. In (15) we consider u* fixed at
0.13 and scale the Debye temperature with a y=2.85.
The change in N with pressure is calculated from the
two spectra of Fig. 2 and Eq. (14). We find A(0)=2.53
and N (5%)=2.21. Substituting these numbers into the
McMillan formula gives 0.87 for the ratio of the two
temperatures which is very close to our value of 0.88.
The small difference is safely assigned to the approxi-
mate nature of the McMillan result. It shows, however,
that it can be used with confidence to discuss the effect
of pressure on 7. for metals with a phonon spectrum
similar to that of Nb. Hodder has, in fact, recently used
this formula to discuss the effect of pressure on the
critical temperature in Pb. His work is closely related
to ours, although our results should be somewhat more
accurate since we have avoided some of the approxi-
mations used by Hodder.

We now present results for Hg. The phonon spectrum
is known from tunneling experiments and the BCS
ratio is even greater than in Pb. Strong coupling effects
should be even more pronounced. In Fig. 6 we have
plotted a?(w)F(w) for a 5% volume decrease and for
P=0. The Gruneisen vy used was y=3.0 as suggested
by Olsen, Andres, and Geballe.”® A constant vy may be
more valid in this case than for Pb because the strong
peak at low frequency is quite important. At P=0,
N(0)U, is adjusted to 0.09 so as to get the measured
gap value Ag=0.825 meV at 7'=0. The ratio obtained
for

200/ 5T o= 4.62

as compared with 4.6 from experiment. Swihart,
Scalapino, and Wada obtained 4.8 from a relatively
crude representation of the spectrum in Hg. At 59
volume decrease, we get

(A¢)5%=0.675 meV
and
(2A0/kBT o)s%=4.25,
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which is still almost as large as that found in Pb,
indicating that we are well in the strong coupling regime
in this case even for a 59, volume change. To our
knowledge there does not exist any experimental data
against which these numbers can be compared. We are
then making a prediction in this case, although the
results are, of course, completely consistent with the
situation in Pb. In Fig. 5 we have plotted our Hg
results along side the Pb data. We see that the volume
variation of 7', should be nearly the same in Hg as in Pb.

V. CONCLUSIONS

We have performed a detailed calculation of the
phonon part o?(w)F(w) for Pb under a 5%, volume
change using the method outlined by Carbotte and
Dynes. It is found that the resulting distribution can be
approximated very well by a simple rescaling of the
zero-pressure distribution. This rescaling can be carried
through just as easily on the zero-pressure tunneling-
derived value for a?(w)F (w), so that such data can be
used to obtain finite-pressure results.

The decrease in the critical temperature observed in
Pb with volume decrease can be understood quantita-
tively from the calculated shifts in the phonon kernel
of the Eliashberg gap equations. Also these same equa-
tions correctly predict the measured decrease in the
BCS ratio under pressure. That is, the zero-temperature
gap Ao is found to decrease somewhat more rapidly
than the critical temperature. Superconducting Hg also

PRESSURE DEPENDENCE . - - 1143

CWF W)

w (meV)

Fi6. 6. Solid curve is o?(w)F(w) in Hg™ (after” McMillan and
Rowell, Ref. 3). The dashed curve is the McMillan-Rowell
curve rescaled to correspond to a 5%, volume decrease.

behaves in a similar fashion. While a 59, volume
decrease in Pb reduces 2A,/ksT, to a value of 3.75,
close to the weak coupling limit of 3.52, the same
decrease in Hg gives a value of 4.25, still well within
the strong coupling regime. At present, there exist no
experiments in Hg against which these predictions can
be tested quantitatively.
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